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This work forms the second part of a numerical study about the dynamics of diffusive fronts in
concentration-dependent diffusion processes. We previously demonstrated that one-dimensional spreading of a
density front in a concentration-dependent microscopically heterogeneous, macroscopically homogeneous iso-
tropic lattice gas automatdih.GA) substantially deviates from th&? relation expected from Fick’s law over
large periods of time. The time exponent was found to be larger than 1/2, i.e., spreading of the density front
is enhanced with respect to standard Fickian diffusion. In this note, we specifically investigate the dynamics of
receding by using the same LGA model. We show here that the receding process essentially stal@has
LGA simulations of diffusive fronts thus lead to the paradoxical result of Fick’s-compatible receding and
anomalous superdiffusive spreading for the same microscopic random structure and the same boundary con-
ditions. The results also suggest that hysteresis of the spreading-receding cycle could arise from the contrasted
dynamics between spreading and receding. A conceptual model of “offer and demand” which includes both the
diffusivity gradientdD(p)/dp and the conditions applied at boundaries as main parameters is proposed to
tentatively account for the dynamics of diffusive fronts in concentration-dependent diffusion processes.
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[. INTRODUCTION alone. In the past two decades however, evidence of devia-
e o __tion from the classical'/? relation has been increasingly of-
 Diffusion is present everywhere, from ionic transport in o renarted in almost all fields of sciendeee[5] and ref-
biological membranes to moisture transfer in nonsaturatedences herejn It has been possible in some circumstances
porous medid1,2]. While numerous theoretical and experi- 4 relate deviation from the"2 scaling to the spatial and/or
mental studies have been already devoted to depict this trangsmporal variations of the transport properties of the physical
port mechanism in the past, the dynamics of diffusive frontgysiem considerefs]. In most cases, however, the spatial
remains a challenging and continuously renewed problemqor temporal variation of the diffusion coefficient was not
with very important practical appllcatu_)ns in all fields of sci- ggtaplished and the anomaly essentially remained unex-
ences. Classically, the analysis of diffusion has been conyjained. The ever-growing evidence of nonclassical behavior
ducted at the macroscopic level by using the empirical Fick'sgenerally referred to as “anomalous diffusiprttracted a
hypothesis, which stipulates proportionality between the fluXarge attention and progressively led to question the overall
g and the concentration gradief=DVC, whereD is the validity of Fick’s theory of diffusion[7-9].
coefficient of diffusion andC the concentration of the diffus- We recently proposed that anomalous diffusion may sys-

ing quantity. The main implication of Fick's assumption hasiematically occur in concentration-dependent diffusion pro-
been pointed out early: the displacement rate of the diffusingegges je. processes in which the diffusion coeffi@&@)

quantity (or the velocity of the diffusing frontmust be pro- g 5 fynction of the concentratiad of the diffusing quantity
portional to the square root of time in one dimension, pro[s 1] \we used a concentration-dependent lattice gas au-
vided that the system considered is homogeneous and iSotr@smaion (LGA) diffusion model to simulate diffusion in a
pic [3,4]. It is worth noting that the’? scaling imposed by microscopically heterogeneous random structure and we
Fick's hypothesis remains equally valid whether the coeffi-yomonstrated that spreading of a density front substantially

cient of (;Iiffugion is cor!stant or varies witr_\ thg concentrationand systematically deviates from the expect¥d scaling
of the diffusing quantity and whether diffusive fronts are oer poth short and large periods of time in this model. It

spreading or receding fronf8]. Thet'/* dependence of dif- 514 he mentioned that the same result was previously
fusive fronts is in fact considered as the fingerprint of diffu- jpi5ined by[11] from Monte Carlo simulations of a similar
sion and has been systematically used to detect the OCC%‘roblem. We were also capable to relate occurrence of
rence of this transport mechanism in natural processes. It i$,, o malous spreading to the diffusivity gradiei(C)/dC in
inversely assumed that a?}z( diffusionlike process which doeg, concentration-dependent LGA diffusion model: positive
not follow the expected™ relation cannot be diffusion and negative diffusivity gradients are expected to lead to
superdiffusive and subdiffusive spreading respectively. It is
worth noting that the results of numerical simulations have
*Electronic address: michelkuntz@gmail.com been since corroborated by experimental data. Spreading of
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moisture fronts in nonsaturated porous media provides separticles: the continuity and momentum conservation are
eral examples of superdiffusiofl3-16,20, whereas evi- thus locally satisfied at any time. It is now well established
dence of subdiffusion has been reported in concentratethat the LGA are capable to simulate Navier-Stokes and dif-
CuSQ, solution diffusing in pure wat€l5,17]. Both simula-  fusion equations at the macroscopic le{&8]. The macro-
tions and experiments thus suggest that anomalous spreadifgopic transport properties of the gas are determined by the
of diffusive fronts is the rule in concentration diffusion pro- collision rate which control how mass and momentum are
cesses. redistributed in the triangular lattice. The probability of col-

In this note, we used the LGA model introduced1®] to  lisions depends of course on the applied collision rules but
specifically investigate the process of receding of a densitylso on the concentration of the particles in the lattice, i.e.,
front in order to get a complete picture of the spreading-the intrinsic diffusivity of the LGA is a direct function of the
receding cycle in concentration-dependent diffusion pro<oncentratiorp. This makes LGA a suitable tool to investi-
cesses. One of the objectives was to determine whether tiggite concentration-dependent diffusion processes, as already
dynamics of receding was also anomalous or whether it igpointed out in[12]. The concentratiop used below is de-
compatible with thet!’? time scaling inferred from Fickian fined as the average number of particles per lattice pite:
hypothesis. The simulations carried out indicate that receding0 corresponds to an empty latti¢eo particle$, whereas
essentially scales @& in the one-dimensional semi-infinite p=1 indicates that every site of the triangular lattice houses a
LGA model, i.e., the time dependence inferred from Fick'sparticle. Because all the particles have the same velocity, the
hypothesis remains valid for the receding case at first glancéemperature is constant and the equation of state simplifies to
We also show that the complete spreading-receding cycle aslinear relationship between the pressBrand the density
simulated through the concentration-dependent LGA diffu-of particlesp, i.e., there is a direct correspondence between
sion model naturally presents hysteresis. The note is org@ressure and concentration.
nized as follows: the basic features of the LGA model and The simulations were conducted using the same model as
numerical techniques used to simulate concentrationthat described ifi10]: only the initial state of the lattice and
dependent diffusive fronts are briefly sketched in Sec. Il. Théhe conditions applied at the boundaries have been changed.
numerical evidence that supports & dependence of the The two-dimensional triangular lattice was 8000 lattice units
receding process is reviewed in Sec. lll. The numerical re{l.u.) long and 2093/2 I.u. large. The microscopically het-
sults are discussed in Sec. IV. We compare the evolution ierogeneous, macroscopically homogeneous isotropic me-
time of the receding and spreading processes to definitivelgdium was identically approximated by point scatterers dis-
establish thati) the two processes do not follow the sametributed at random which populate 8% of the lattice sites.
dynamics andii) the variations of the dynamics of diffusive Particles were interacting following the FElBollision rules
fronts from spreading to receding can only be related to th¢21] [in reference to the Frisch, Hasslacher, and Pomeau
difference of the conditions applied at the boundaries in théFHP) lattice gas automaton model, Frisehal, Phys. Rev.
LGA model. Numerical evidence of hysteresis of thelett. 56,1505(1986] and free slip specular reflection was
spreading-receding cycle is also provided in this section. Thapplied at the interface between the scatterers and the par-
contrasted behavior between spreading and receding diffuicles [22]. As previously noted if12], the effective diffu-
sive fronts is tentatively reconciled by applying the “offer sivity D(p) of the microscopically heterogeneous LGA
and demand” model introduced ifl0]. We show that model is a function of both the applied interparticles colli-
anomalous spreading and normal receding is expected if thgons rules and the interaction of the particles with the scat-
diffusivity gradientdD(C)/dC is positive. In this scheme, the terers. The variation oD(p) was estimated ih10] for the
receding process should be subdiffusive in concentrationspecific combination of collisions used in this paper and is
dependent diffusion processes where the diffusivity is a conrepresented in Fig. 1 as a function @fThe diffusion coef-
tinuously decreasing function of the concentration. ficient D(p) is a decreasing function gf at very low con-
centration, remains almost constant betweer0.05 andp
=0.5 and then increases by about two decades frei.5 to
p=0.85.

Over the past decade, the lattice gas automat@BA) The particles were initially distributed at a uniform con-
method has proven to be a reliable numerical tool to simulatéentrationp,=0.9 with an average velocityu)=0 over all
hydrodynamics and diffusion processgs3,19. The LGA the triangular lattice, i.e., each site was close to its maximum
method and its theoretical principles have been extensivelgapacity at=0 (Fig. 2). The boundaries are periodic in tiie
described in previous publications to which the reader is redirection: the particles that leave at one side re-enter the
ferred and will not be reminded here except for the verylattice on the other side with the same direction and velocity.
basic lines. Schematically, the macroscopic behavior of a latfo simulate one-dimensional receding in a semi-infinite me-
tice gas automaton is the result of the collective behavior oflium, a concentration drop was imposed by maintaining a
many individual discrete particles which locally follow the constant concentratiop,=0.01 along the right-hand side of
same simple and invariable interaction rules. All the particleshe model(x=8000 during the simulation, while the left-
have unit mass and travel at unit velocity on a discrete trianhand side(x=0) was hermetically closed. In response to the
gular lattice and they may engage in collisions which allowapplied density drop;—p,, the particles naturally migrate
redistribution of their velocities along the directions of thetoward the low concentration boundary where they are al-
lattice but must conserve the mass and momentum of thiswed to escape freely at the interface. As a result, the lattice

Il. THE NUMERICAL MODEL
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FIG. 3. Position of the receding front at different time steps of
the simulation.

0 0.2 0.4 0.6 0.8 1
density p moves back inside the heterogeneous medium toward the
left-hand side of the model. The slope of the density front
FIG. 1. Effective diffusivity of the LGA model implemented in progressively smoothes as time elapses but the concentration
this paper as a function of the density of partictes of particles remains constant along the left-hand side, i.e., the
model remains semi-infinite during the first 100 000 time
progressively empties: this in turn induces receding of thesteps. Then, the receding front finally reaches the left side of
density front. the universe and the average concentration gradient applied
at the boundaries starts to decrease: the receding process is
not semi-infinite anymore. The patrticles continue to leave the
ll. NUMERICAL RESULTS lattice until the medium eventually empties, i.e., the concen-

Receding of the density front was monitored as afunctiontrat'on gradient becomes null. The simulation was however

of time in Fig. 3. The density profiles were obtained by Sum_stopped after 500 000 '_ur_n_e steps bef_ore _dralnlng was com-
. . o . pleted because of prohibitive calculation times.
ming all the particles over all at each positiorx for a given ) . . .
; . The dynamics of receding was determined by evaluating
t and the procedure was repeated at different time steps. ’%ﬁ X
. : . e particles flow rate through the open boundary as a func-
soon as the patrticles are free to leave the triangular lattice, a . o .
~~'fion of time. The number of remaining particles was mea-
steep knee-shaped front forms. Then, the front progresswelg( . . X .
ured every 10 time steps by summing all the particles in the
lattice. This quantity was then subtracted from the initial
number of particles to determine the cumulative loss of
mass. The result is reported in a log-log diagram in Fig. 4.
The “instantaneous” slope of the cumulative mass loss curve
was calculated over successive intervals of a few thousands
time steps from the curve of Fig. 4 and is reported in Fig. 5.
As can be seen, the slope is initially significatively larger
than 1/2, but rapidly decreases to reach 1/2 after a few
thousands time steps. The slope then remains almost constant
until the simulation was stopped with only small fluctuations
around the value 1/2. It is important to mention that the
slope remains constant after the receding front has reached
the left-hand side of the model, i.e., after the concentration
Po drop p1—pg initially imposed at the boundaries has started to
X decrease, suggesting that the way the receding process
evolves in time does not depend on the value of the applied
FIG. 2. (@ Schematic view of the numerical setup. White COncentration gradient. _
squares figure scatterers randomly distributed in the lattice, clear EVolution with time of the momentum of the particles
and dark gray zones represent, respectively, low and high particleBrovides complementary information by allowing us to
concentration. The arrows illustrate the periodic boundaries alongVvaluate the forces at play during the receding process. The
the y direction. (b) Concentration profile at=0 along thex momentum curve of Fig. 6 was calculated by summingxthe
direction. component of the momentumu, of all the particles over all
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FIG. 4. lllustration of the cumulative particles loss as a function
of time (log-log diagram. The slope of the gray lines i§. The
dashed line approximatively indicates the time at which recedin
starts to scale as’2

FIG. 6. Evolution of the cumulative momentum of the particles
goopulating the microscopically heterogeneous medium against time.

results from the application of an infinite concentration gra-
lattice sites every 10 time steps. The concentration of redient att=0 thus continuously dissipates. The origin of this
maining particles was also plotted in the same diagram. Notérce and its evolution with time will be tentatively clarified
that because the model is one-dimensional, the mean value the next section.
of they component of the momentum remains close to 0 all
the time. The momgntum, which is nulll't;t:O (?he mean IV. DISCUSSION
velocity of the particles(v)=0 at t=0) initially increases
abruptly once the density drop is established, reaches a maxi- The results reported above indicate that one-dimensional
mum after a few thousands time steps and then starts tgceding of a density front essentially scalestéin the
decrease continuously, as the front progressively smoothegoncentration-dependent diffusion lattice gas automaton, ex-
The mean particles velocity follows the same trend, i.e., itcept for the first few thousands time stepsg. 5. As far as
increases first, then stabilizes before showing a slow anthe LGA model is representative of the dynamics of diffusive
regular decrease as time elapses. On the other hand, the fofigents in concentration-dependent diffusion problems ttfe
responsible for the displacement of the particles toward théependence of the receding process inferred from the classi-
open boundary continuously decreases with time and the ré&al empirical Fick's law(see for instancg,4]) thus applies.
sulting forces acting on the receding front become negativdVhile it may be argued that such a result barely deserves a
after a few thousands time steps. The initial impulsion whichmention, it must be compared with the previous findings of
the authors about spreading in the same LGA mddél.
Indeed, we recently established that the expetitédelation
did not hold to account for spreading. To illustrate this, we
plotted the evolution of the slope of the cumulative infiltra-
tion curve (i.e., the gain rate of particlesneasured during
spreading simulations ifiL0] as a function of time in Fig. 5
055 | Q\ | for comparison. It must be reminded that the applied bound-
\ ary conditions were identical for the two numerical experi-
\\ ments, which only differed by the initial particle’s content. It
05 e el +— R SO Y L SN is evident from the diagram that the two processes, receding
and spreading, do not follow the same dynamics. Whereas in
the former case the time exponent remains close to 1/2 most
045 F o Receding 1 of the time, it is significatively larger than 1/2 in the latter
Spreading case[10]. This leads to the paradoxical result of “normal,”
Fick’s-compatible receding and anomalous superdiffusive
spreading.
One consequence of the contrasted dynamics between re-
ceding and spreading processes could be hysteresis of the
FIG. 5. Evolution with time of the slopa of the cumulative ~ Spreading-receding cycle. To validate this assumption that
mass loss curve of Fig. 4. The slope of the cumulative mass gaiRas intuitively been inferred from the previous results, both
curve as measured during the spreading simulatiof$0his also  the receding and spreading experiments were repeated until
reported for comparison. the diffusion regime became stationary, i.e., the number of
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steady-state concentration as a function of the applied concentration
fgradient. The data suggest a hysteresis loop with the spreading

FIG. 7. Evolution of the number of particles as a function o branch Iving below the receding branch as expected from
time for both the receding and spreading numerical experiments; perime>rllltsg W ing xp

The stationary regime is established after about 50 000 and 100 odd*

time steps, respectively. The number of remaining particles in . . . .
steady state is clearly different whereas the conditions applied alonﬁpreadlng by about 4%, for the same applied density gradient

the boundaries are identical for the two simulations. The initial andg?1~Po- The diagram suggests the existence of a complete

boundary conditions of the experiments are illustrated by the twdlySteresis loop with the spreading branch lying below the
diagrams included in the figure. receding branch: this is actually the classical geometry of

hysteresis loops measured experimentally. It should be men-
particles leaving the lattice on the right-hand side was thdioned here that to determine numerically a complete hyster-
same as that entering the model on the left-hand &de esis loop would have required large calculation times as well
Fig. 2. In order to obtain a steady state, a continuous sourcas substantial modifications of the code in order to be able to
of particles at a constant concentration was required alongcan a large range of density gradients: a more complete data
one boundary for both spreading and receding simulationset will be hopefully presented in a forthcoming paper. It
(Fig. 7). Note also that a smaller, 10000 lattice was used must be reminded that hysteresis was initially not the objec-
to reduce calculation times. The conditions applied at thdive of these simulations: occurrence of hysteresis actually
boundaries in both cases were the same as those describedappears as an emerging property of the diffusing process in
Sec. Il otherwisdi.e., po=0.01 andp;=0.9; see Fig. R Evo-  the concentration-dependent LGA diffusion model.
lution with time of the density of patrticles is plotted in Fig. 7 The problem then arises to know how receding does scale
for the two experiments. As can be seen, the density does nast!2 and spreading does not. It should be mentioned here
change anymore after 50 000 and 100 000 time steps for réhat this question has not been fully clarified yet. As specified
ceding and spreading, respectively, indicating that the LGAN the introduction, diffusion equation of the typ#C/dt
diffusion model has reached a stationary regime. However V -[D(C) VC] cannot give solutions which do not scale as
the density of the particles populating the lattice in steadyt’’% the validity of such a statement is corroborated in many
state is not the same in both cad€3g. 7): it is actually  reference workgsee for instancé3]) and we were able to
lower for spreading than for receding by about 4%. The ori-verify it on our own with both analytical and numerical ap-
gin of such a difference was clarified by comparing theproaches. The generally well-accepted idea that anomalous
spreading and receding steady-state density profiles in Figliffusion in microscopically heterogeneous media arises
8(a). Although the two profiles present a similar knee-shapedrom the interactions of the diffusing quantity with the com-
envelope, they actually do not superimpose. The particleplex fractal geometry of the backgrourskee[9]) should be
density along the spreading profile is systematically lower atejected in this casdi) as pointed out earlidrl0], the ge-
any givenx position: as a consequence, the spreading fronbmetry of the microscopically heterogeneous LGA is not
lies below the receding one close to the right open boundaryractal (the scatterers are randomly distributeahd (ii) the
The mean density of particles in steady state was evaluateshme microscopically heterogeneous random structure was
for the two numerical experiments by integrating the twoused for both receding and spreading experiment, whereas
profiles overx and plotted in Fig. &) as a function of the only spreading was found to be anomalous. It is of particular
concentration gradient applied at the boundaries. As eximportance at this stage to remind oneself that the dynamics
pected, the two points do not coincide: the density pointof the particles at the “microscopic” level were governed by
associated with receding lies significatively above that foridentical rules(FHP; collision rules between the particles
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and specular “free-slip” collisions against the scatteréos TABLE |. Expected relationships between the type of diffusion,
both the receding and spreading experiments, i.e., the ethe diffusivity gradient, and the applied boundary conditions, ac-
ementary mechanisms of mass and momentum transfer reerding to the “offer and demand” model. The variahleepresents
main unchanged at the particles level. Since the difference ithe frontal growth exponent of diffusion.

the macroscopic dynamics of the concentration front be

tween spreading and receding does not reflect a change of theiffusivity gradient Spreading Receding
modes of interactions between the particles, the variations of — —
the dynamics of diffusive fronts must then be looked for in ~ dD(p)/dp>0 superdiffusion normal diffusion
the conditions applied at the boundaries of the LGA model. a>1 a=3

The apparently inconsistent results of “normal,” Fick’s- dD(p)/dp=0 normal diffusion normal diffusion
compatible receding and anomalous superdiffusive spreading a=1 a=1
can be tentatively reconciled through the model of “offer and dD(p)/dp<0 subdiffusion subdiffusion

demand,” initially introduced by Kiintz and Lavall§&Q] to 1 L
account for anomalous spreading in concentration-dependent a<j a<jz
diffusion processes. Spreading can be viewed as the inflation
of the sourcgwhich can be continuous in time or npt.e.,

the size of the source continuously increases as the fronomalous diffusion only depends whether momentum re-
progresses. The term source used above refers globally to tisalting from the inflation of the source can be dissipated or
reservoir from which the particles which progress into thenot. As a consequence, receding scales*3safter only a
medium come from: it corresponds in practice to the domairshort period whereas spreading remains superdiffusive over
where the concentration of the particles is higher than théarge periods of time. The occurrence of nonclassical
initial concentration or/and higher than the concentration im“anomalous” spreading in the LGA model therefore essen-
posed along the open boundary. The way the source inflategilly reduces to a boundary problem. This in turn implies
results from the competition between its potential of expanthat the theoretical explanations involving partial differential
sion and the capacity of the front to move forward. The resulequation of fractional ordefi.e., biased microscopic rules of

of this competition is settled by the diffusivity gradient, i.e., mass and momentum transfer, $6®, are not necessary to

the spatial distribution of the transport properties inside the,ccount for anomalous diffusion in concentration-dependent
inflating source, as previously proposed[i®]. For a posi- diffusion processes.

tive dIB(p)lldp,daslfongh?LéGAhmodel describzfedhin this no_te The predictions that have been inferred from the “offer
I(isﬁfi? dlg't tﬁn frar?tob 4fL0]), t ?tixparrl]sul)lndc_)ﬁt giourtale 'S and demand” analysis are summarized in Table I. If the dif-
€d at the front because ot the small dilfusivity at low fusivity gradient is negativedD(p)/dp < 0], diffusion is ex-

concentration. Because the number of particles provided be ected to be subdiffusive for both spreading and receding

hind the front is larger than what can be propagated at th8

front, the spreading front actually behaves as if it weredccording to the mechanism of offer and demand, because

pushed and superdiffusion occurs. The numerical results réf@nSport at the front remains always more efficient than be-
ported in the previous section indicate that receding is inilind the front. In this scheme, “true” Fickian diffusidhe.,
“a”y driven by the same mechanism' Becauﬂg(p)/dp dlfoSI(?n Sca|ll’lg aStl/z a” the tlmé Only hOIdS forD con-
>O’ the pressure |mmed|ate|y builds up behind the frontstant, l.e., When Oﬁer beh|nd the fI’OI’lt eXaCtIy balances de-
once the concentration drop has been established along tfeand at the front. Although the “offer and demand” mecha-
open side of the model: and as for spreading, the recedingism essentially remains a “hand waving” conceptual model
front initially behaves as if it were pushed. Evidence of theat this stage, it can account for most of the features of diffu-
pressure buildup inside the source is provided by the initiakion: it is worth mentioning that its capacity to provide reli-
increase of momentur(Fig. 6). As a consequence, the es- able predictions has already been confirmed by experimental
cape rate of particles is enhanced with respect to that exdata[5,10]. It should be mentioned that it might be that for
pected from Fick's assumption: offer is larger than demandsome physical systems, the diffusivity will not be a simple
This interpretation is corroborated by the fact that the timemonotonic increasing or decreasing function of the concen-
exponent associated with receding is initially larger than 1/2ration p, but will show several minima and maxima. Predic-
(Fig. 5 as for spreading. However, receding does not involveion of the macroscopic behavior of diffusive fronts in such
a mass loss only: the particles that leave the model also cargystems is far from being straightforward at this stage. Both
away momentum with them. The loss of momentum contribthe dynamics and the shape of the front may exhibit mixed
utes to efficiently dissipate the overpressure induced by th&eatures: subdiffusive knee-shaped spreading fronts may be
inflation of the source behind the front. The momentum isone of these mixed modes for instank4,23. Anyway,
seen to increase first as inflation occurs and then starts t&uch problems deserve a more careful and detailed analysis
decrease slowly after only a few thousands time steps, meathan that presented above.
ing that the overpressure is dissipatifidg. 6). Note that the The “offer and demand” mechanism which only implies a
momentum peak coincides with the moment at which thefew measurable macroscopic parameters suggests simple ex-
time exponent reaches the value 1/2. After dissipation of th@erimental tests. The next step of this work will thus consist
excess pressure, offer can by no way be larger than demairinl confirming the predictions listed in Table | by experi-
and receding thus scales &&. ments. Among the many possibilities, investigating the dy-
The same transport mechanism is thus involved for botthamics of moisture fronts in nonsaturated porous media
spreading and receding. The occurrence of “normal” orseems the most promising approach. Evidence of anomalous
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diffusion of absorption fronts has been already reported in'/? scaling expected from Fick’s law did not hold for one-
several porous materiald2,14,23. An experimental inves- dimensional spreading of a density front in the LGA model.
tigation is now required to confirm beyond question that re-The time exponent was found to be larger than 1/2, i.e.,
ceding actually scales a¥? after only a short period in the spreading of the density front was found to be enhanced with
materials already investigated. It should be mentioned thatespect to standard Fickian diffusion. In this paper, we dem-
drying generally exhibits two distinct stagésg.,[24]) that  onstrated that in contrast with spreading, the receding pro-
may eventually correspond to the two, first anomalous andess scales @82 in the same LGA model, after only a short
then normal, regimes identified in LGA receding simulations.transient period, i.e., spreading and receding do not obey the
Validation of hysteresis is a bit more complex and requiressame dynamics. Since the difference between spreading and
techniques such as nuclear magnetic resonance or radiogn@ceding can only result from the changes of the conditions
phy to visualize diffusive fronts. According to the LGA simu- applied at the boundaries, the occurrence of nonclassical
lations, spreading and receding steady-state fronts are eanomalous diffusion therefore reduces to a boundary prob-
pected to be distinct. Since such techniques are now moidem in concentration-dependent diffusion processes. The nu-
easily accessible, to reproduce experimentally the simulamerical results also suggest a general mechanism for hyster-
tions reported in previous paragraphs should be in principlesis.
straightforward.
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