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This work forms the second part of a numerical study about the dynamics of diffusive fronts in
concentration-dependent diffusion processes. We previously demonstrated that one-dimensional spreading of a
density front in a concentration-dependent microscopically heterogeneous, macroscopically homogeneous iso-
tropic lattice gas automatonsLGAd substantially deviates from thet1/2 relation expected from Fick’s law over
large periods of time. The time exponent was found to be larger than 1/2, i.e., spreading of the density front
is enhanced with respect to standard Fickian diffusion. In this note, we specifically investigate the dynamics of
receding by using the same LGA model. We show here that the receding process essentially scales ast1/2. The
LGA simulations of diffusive fronts thus lead to the paradoxical result of Fick’s-compatible receding and
anomalous superdiffusive spreading for the same microscopic random structure and the same boundary con-
ditions. The results also suggest that hysteresis of the spreading-receding cycle could arise from the contrasted
dynamics between spreading and receding. A conceptual model of “offer and demand” which includes both the
diffusivity gradient dDsrd /dr and the conditions applied at boundaries as main parameters is proposed to
tentatively account for the dynamics of diffusive fronts in concentration-dependent diffusion processes.
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I. INTRODUCTION

Diffusion is present everywhere, from ionic transport in
biological membranes to moisture transfer in nonsaturated
porous mediaf1,2g. While numerous theoretical and experi-
mental studies have been already devoted to depict this trans-
port mechanism in the past, the dynamics of diffusive front
remains a challenging and continuously renewed problem
with very important practical applications in all fields of sci-
ences. Classically, the analysis of diffusion has been con-
ducted at the macroscopic level by using the empirical Fick’s
hypothesis, which stipulates proportionality between the flux
q and the concentration gradient:q=D¹C, whereD is the
coefficient of diffusion andC the concentration of the diffus-
ing quantity. The main implication of Fick’s assumption has
been pointed out early: the displacement rate of the diffusing
quantitysor the velocity of the diffusing frontd must be pro-
portional to the square root of time in one dimension, pro-
vided that the system considered is homogeneous and isotro-
pic f3,4g. It is worth noting that thet1/2 scaling imposed by
Fick’s hypothesis remains equally valid whether the coeffi-
cient of diffusion is constant or varies with the concentration
of the diffusing quantity and whether diffusive fronts are
spreading or receding frontsf3g. The t1/2 dependence of dif-
fusive fronts is in fact considered as the fingerprint of diffu-
sion and has been systematically used to detect the occur-
rence of this transport mechanism in natural processes. It is
inversely assumed that any diffusionlike process which does
not follow the expectedt1/2 relation cannot be diffusion

alone. In the past two decades however, evidence of devia-
tion from the classicalt1/2 relation has been increasingly of-
ten reported in almost all fields of sciencessseef5g and ref-
erences hereind. It has been possible in some circumstances
to relate deviation from thet1/2 scaling to the spatial and/or
temporal variations of the transport properties of the physical
system consideredf6g. In most cases, however, the spatial
and/or temporal variation of the diffusion coefficient was not
established and the anomaly essentially remained unex-
plained. The ever-growing evidence of nonclassical behavior
sgenerally referred to as “anomalous diffusion”d attracted a
large attention and progressively led to question the overall
validity of Fick’s theory of diffusionf7–9g.

We recently proposed that anomalous diffusion may sys-
tematically occur in concentration-dependent diffusion pro-
cesses, i.e., processes in which the diffusion coefficientDsCd
is a function of the concentrationC of the diffusing quantity
f5,10g. We used a concentration-dependent lattice gas au-
tomaton sLGAd diffusion model to simulate diffusion in a
microscopically heterogeneous random structure and we
demonstrated that spreading of a density front substantially
and systematically deviates from the expectedt1/2 scaling
over both short and large periods of time in this model. It
should be mentioned that the same result was previously
obtained byf11g from Monte Carlo simulations of a similar
problem. We were also capable to relate occurrence of
anomalous spreading to the diffusivity gradientdDsCd /dC in
the concentration-dependent LGA diffusion model: positive
and negative diffusivity gradients are expected to lead to
superdiffusive and subdiffusive spreading respectively. It is
worth noting that the results of numerical simulations have
been since corroborated by experimental data. Spreading of*Electronic address: michelkuntz@gmail.com
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moisture fronts in nonsaturated porous media provides sev-
eral examples of superdiffusionf13–16,20g, whereas evi-
dence of subdiffusion has been reported in concentrated
CuSO4 solution diffusing in pure waterf5,17g. Both simula-
tions and experiments thus suggest that anomalous spreading
of diffusive fronts is the rule in concentration diffusion pro-
cesses.

In this note, we used the LGA model introduced inf10g to
specifically investigate the process of receding of a density
front in order to get a complete picture of the spreading-
receding cycle in concentration-dependent diffusion pro-
cesses. One of the objectives was to determine whether the
dynamics of receding was also anomalous or whether it is
compatible with thet1/2 time scaling inferred from Fickian
hypothesis. The simulations carried out indicate that receding
essentially scales ast1/2 in the one-dimensional semi-infinite
LGA model, i.e., the time dependence inferred from Fick’s
hypothesis remains valid for the receding case at first glance.
We also show that the complete spreading-receding cycle as
simulated through the concentration-dependent LGA diffu-
sion model naturally presents hysteresis. The note is orga-
nized as follows: the basic features of the LGA model and
numerical techniques used to simulate concentration-
dependent diffusive fronts are briefly sketched in Sec. II. The
numerical evidence that supports thet1/2 dependence of the
receding process is reviewed in Sec. III. The numerical re-
sults are discussed in Sec. IV. We compare the evolution in
time of the receding and spreading processes to definitively
establish thatsid the two processes do not follow the same
dynamics andsii d the variations of the dynamics of diffusive
fronts from spreading to receding can only be related to the
difference of the conditions applied at the boundaries in the
LGA model. Numerical evidence of hysteresis of the
spreading-receding cycle is also provided in this section. The
contrasted behavior between spreading and receding diffu-
sive fronts is tentatively reconciled by applying the “offer
and demand” model introduced inf10g. We show that
anomalous spreading and normal receding is expected if the
diffusivity gradientdDsCd /dC is positive. In this scheme, the
receding process should be subdiffusive in concentration-
dependent diffusion processes where the diffusivity is a con-
tinuously decreasing function of the concentration.

II. THE NUMERICAL MODEL

Over the past decade, the lattice gas automatonsLGAd
method has proven to be a reliable numerical tool to simulate
hydrodynamics and diffusion processesf18,19g. The LGA
method and its theoretical principles have been extensively
described in previous publications to which the reader is re-
ferred and will not be reminded here except for the very
basic lines. Schematically, the macroscopic behavior of a lat-
tice gas automaton is the result of the collective behavior of
many individual discrete particles which locally follow the
same simple and invariable interaction rules. All the particles
have unit mass and travel at unit velocity on a discrete trian-
gular lattice and they may engage in collisions which allow
redistribution of their velocities along the directions of the
lattice but must conserve the mass and momentum of the

particles: the continuity and momentum conservation are
thus locally satisfied at any time. It is now well established
that the LGA are capable to simulate Navier-Stokes and dif-
fusion equations at the macroscopic levelf19g. The macro-
scopic transport properties of the gas are determined by the
collision rate which control how mass and momentum are
redistributed in the triangular lattice. The probability of col-
lisions depends of course on the applied collision rules but
also on the concentration of the particles in the lattice, i.e.,
the intrinsic diffusivity of the LGA is a direct function of the
concentrationr. This makes LGA a suitable tool to investi-
gate concentration-dependent diffusion processes, as already
pointed out inf12g. The concentrationr used below is de-
fined as the average number of particles per lattice site:r
=0 corresponds to an empty latticesno particlesd, whereas
r=1 indicates that every site of the triangular lattice houses a
particle. Because all the particles have the same velocity, the
temperature is constant and the equation of state simplifies to
a linear relationship between the pressureP and the density
of particlesr, i.e., there is a direct correspondence between
pressure and concentration.

The simulations were conducted using the same model as
that described inf10g: only the initial state of the lattice and
the conditions applied at the boundaries have been changed.
The two-dimensional triangular lattice was 8000 lattice units
sl.u.d long and 200Î3/2 l.u. large. The microscopically het-
erogeneous, macroscopically homogeneous isotropic me-
dium was identically approximated by point scatterers dis-
tributed at random which populate 8% of the lattice sites.
Particles were interacting following the FHP5 collision rules
f21g fin reference to the Frisch, Hasslacher, and Pomeau
sFHPd lattice gas automaton model, Frischet al., Phys. Rev.
Lett. 56,1505 s1986dg and free slip specular reflection was
applied at the interface between the scatterers and the par-
ticles f22g. As previously noted inf12g, the effective diffu-
sivity Dsrd of the microscopically heterogeneous LGA
model is a function of both the applied interparticles colli-
sions rules and the interaction of the particles with the scat-
terers. The variation ofDsrd was estimated inf10g for the
specific combination of collisions used in this paper and is
represented in Fig. 1 as a function ofr. The diffusion coef-
ficient Dsrd is a decreasing function ofr at very low con-
centration, remains almost constant betweenr=0.05 andr
=0.5 and then increases by about two decades fromr=0.5 to
r=0.85.

The particles were initially distributed at a uniform con-
centrationr1=0.9 with an average velocitykul=0 over all
the triangular lattice, i.e., each site was close to its maximum
capacity att=0 sFig. 2d. The boundaries are periodic in they
direction: the particles that leave at one side re-enter the
lattice on the other side with the same direction and velocity.
To simulate one-dimensional receding in a semi-infinite me-
dium, a concentration drop was imposed by maintaining a
constant concentrationr0=0.01 along the right-hand side of
the modelsx=8000d during the simulation, while the left-
hand sidesx=0d was hermetically closed. In response to the
applied density dropr1−r0, the particles naturally migrate
toward the low concentration boundary where they are al-
lowed to escape freely at the interface. As a result, the lattice
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progressively empties: this in turn induces receding of the
density front.

III. NUMERICAL RESULTS

Receding of the density front was monitored as a function
of time in Fig. 3. The density profiles were obtained by sum-
ming all the particles over ally at each positionx for a given
t and the procedure was repeated at different time steps. As
soon as the particles are free to leave the triangular lattice, a
steep knee-shaped front forms. Then, the front progressively

moves back inside the heterogeneous medium toward the
left-hand side of the model. The slope of the density front
progressively smoothes as time elapses but the concentration
of particles remains constant along the left-hand side, i.e., the
model remains semi-infinite during the first 100 000 time
steps. Then, the receding front finally reaches the left side of
the universe and the average concentration gradient applied
at the boundaries starts to decrease: the receding process is
not semi-infinite anymore. The particles continue to leave the
lattice until the medium eventually empties, i.e., the concen-
tration gradient becomes null. The simulation was however
stopped after 500 000 time steps before draining was com-
pleted because of prohibitive calculation times.

The dynamics of receding was determined by evaluating
the particles flow rate through the open boundary as a func-
tion of time. The number of remaining particles was mea-
sured every 10 time steps by summing all the particles in the
lattice. This quantity was then subtracted from the initial
number of particles to determine the cumulative loss of
mass. The result is reported in a log-log diagram in Fig. 4.
The “instantaneous” slope of the cumulative mass loss curve
was calculated over successive intervals of a few thousands
time steps from the curve of Fig. 4 and is reported in Fig. 5.
As can be seen, the slope is initially significatively larger
than 1/2, but rapidly decreases to reach 1/2 after a few
thousands time steps. The slope then remains almost constant
until the simulation was stopped with only small fluctuations
around the value 1/2. It is important to mention that the
slope remains constant after the receding front has reached
the left-hand side of the model, i.e., after the concentration
dropr1−r0 initially imposed at the boundaries has started to
decrease, suggesting that the way the receding process
evolves in time does not depend on the value of the applied
concentration gradient.

Evolution with time of the momentum of the particles
provides complementary information by allowing us to
evaluate the forces at play during the receding process. The
momentum curve of Fig. 6 was calculated by summing thex
component of the momentummvx of all the particles over all

FIG. 1. Effective diffusivity of the LGA model implemented in
this paper as a function of the density of particlesr.

FIG. 2. sad Schematic view of the numerical setup. White
squares figure scatterers randomly distributed in the lattice, clear
and dark gray zones represent, respectively, low and high particle’s
concentration. The arrows illustrate the periodic boundaries along
the y direction. sbd Concentration profile att=0 along the x
direction.

FIG. 3. Position of the receding front at different time steps of
the simulation.
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lattice sites every 10 time steps. The concentration of re-
maining particles was also plotted in the same diagram. Note
that because the model is one-dimensional, the mean value
of the y component of the momentum remains close to 0 all
the time. The momentum, which is null att=0 sthe mean
velocity of the particleskvl=0 at t=0d initially increases
abruptly once the density drop is established, reaches a maxi-
mum after a few thousands time steps and then starts to
decrease continuously, as the front progressively smoothes.
The mean particles velocity follows the same trend, i.e., it
increases first, then stabilizes before showing a slow and
regular decrease as time elapses. On the other hand, the force
responsible for the displacement of the particles toward the
open boundary continuously decreases with time and the re-
sulting forces acting on the receding front become negative
after a few thousands time steps. The initial impulsion which

results from the application of an infinite concentration gra-
dient att=0 thus continuously dissipates. The origin of this
force and its evolution with time will be tentatively clarified
in the next section.

IV. DISCUSSION

The results reported above indicate that one-dimensional
receding of a density front essentially scales ast1/2 in the
concentration-dependent diffusion lattice gas automaton, ex-
cept for the first few thousands time stepssFig. 5d. As far as
the LGA model is representative of the dynamics of diffusive
fronts in concentration-dependent diffusion problems, thet1/2

dependence of the receding process inferred from the classi-
cal empirical Fick’s lawssee for instancef2,4gd thus applies.
While it may be argued that such a result barely deserves a
mention, it must be compared with the previous findings of
the authors about spreading in the same LGA modelf10g.
Indeed, we recently established that the expectedt1/2 relation
did not hold to account for spreading. To illustrate this, we
plotted the evolution of the slope of the cumulative infiltra-
tion curve si.e., the gain rate of particlesd measured during
spreading simulations inf10g as a function of time in Fig. 5
for comparison. It must be reminded that the applied bound-
ary conditions were identical for the two numerical experi-
ments, which only differed by the initial particle’s content. It
is evident from the diagram that the two processes, receding
and spreading, do not follow the same dynamics. Whereas in
the former case the time exponent remains close to 1/2 most
of the time, it is significatively larger than 1/2 in the latter
casef10g. This leads to the paradoxical result of “normal,”
Fick’s-compatible receding and anomalous superdiffusive
spreading.

One consequence of the contrasted dynamics between re-
ceding and spreading processes could be hysteresis of the
spreading-receding cycle. To validate this assumption that
has intuitively been inferred from the previous results, both
the receding and spreading experiments were repeated until
the diffusion regime became stationary, i.e., the number of

FIG. 4. Illustration of the cumulative particles loss as a function
of time slog-log diagramd. The slope of the gray lines is12. The
dashed line approximatively indicates the time at which receding
starts to scale ast1/2.

FIG. 5. Evolution with time of the slopea of the cumulative
mass loss curve of Fig. 4. The slope of the cumulative mass gain
curve as measured during the spreading simulations inf10g is also
reported for comparison.

FIG. 6. Evolution of the cumulative momentum of the particles
populating the microscopically heterogeneous medium against time.
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particles leaving the lattice on the right-hand side was the
same as that entering the model on the left-hand sidessee
Fig. 2d. In order to obtain a steady state, a continuous source
of particles at a constant concentration was required along
one boundary for both spreading and receding simulations
sFig. 7d. Note also that a smaller, 10003200 lattice was used
to reduce calculation times. The conditions applied at the
boundaries in both cases were the same as those described in
Sec. II otherwisesi.e.,r0=0.01 andr1=0.9; see Fig. 2d. Evo-
lution with time of the density of particles is plotted in Fig. 7
for the two experiments. As can be seen, the density does not
change anymore after 50 000 and 100 000 time steps for re-
ceding and spreading, respectively, indicating that the LGA
diffusion model has reached a stationary regime. However,
the density of the particles populating the lattice in steady
state is not the same in both casessFig. 7d: it is actually
lower for spreading than for receding by about 4%. The ori-
gin of such a difference was clarified by comparing the
spreading and receding steady-state density profiles in Fig.
8sad. Although the two profiles present a similar knee-shaped
envelope, they actually do not superimpose. The particles
density along the spreading profile is systematically lower at
any givenx position: as a consequence, the spreading front
lies below the receding one close to the right open boundary.
The mean density of particles in steady state was evaluated
for the two numerical experiments by integrating the two
profiles overx and plotted in Fig. 8sbd as a function of the
concentration gradient applied at the boundaries. As ex-
pected, the two points do not coincide: the density point
associated with receding lies significatively above that for

spreading by about 4%, for the same applied density gradient
r1−r0. The diagram suggests the existence of a complete
hysteresis loop with the spreading branch lying below the
receding branch: this is actually the classical geometry of
hysteresis loops measured experimentally. It should be men-
tioned here that to determine numerically a complete hyster-
esis loop would have required large calculation times as well
as substantial modifications of the code in order to be able to
scan a large range of density gradients: a more complete data
set will be hopefully presented in a forthcoming paper. It
must be reminded that hysteresis was initially not the objec-
tive of these simulations: occurrence of hysteresis actually
appears as an emerging property of the diffusing process in
the concentration-dependent LGA diffusion model.

The problem then arises to know how receding does scale
as t1/2 and spreading does not. It should be mentioned here
that this question has not been fully clarified yet. As specified
in the introduction, diffusion equation of the type]C/]t
= = ·fDsCd=Cg cannot give solutions which do not scale as
t1/2: the validity of such a statement is corroborated in many
reference worksssee for instancef3gd and we were able to
verify it on our own with both analytical and numerical ap-
proaches. The generally well-accepted idea that anomalous
diffusion in microscopically heterogeneous media arises
from the interactions of the diffusing quantity with the com-
plex fractal geometry of the backgroundsseef9gd should be
rejected in this case:sid as pointed out earlierf10g, the ge-
ometry of the microscopically heterogeneous LGA is not
fractal sthe scatterers are randomly distributedd and sii d the
same microscopically heterogeneous random structure was
used for both receding and spreading experiment, whereas
only spreading was found to be anomalous. It is of particular
importance at this stage to remind oneself that the dynamics
of the particles at the “microscopic” level were governed by
identical rulessFHP5 collision rules between the particles

FIG. 7. Evolution of the number of particles as a function of
time for both the receding and spreading numerical experiments.
The stationary regime is established after about 50 000 and 100 000
time steps, respectively. The number of remaining particles in
steady state is clearly different whereas the conditions applied along
the boundaries are identical for the two simulations. The initial and
boundary conditions of the experiments are illustrated by the two
diagrams included in the figure.

FIG. 8. sad A comparison of the steady-state concentration pro-
files for both receding and spreading.sbd A representation of the
steady-state concentration as a function of the applied concentration
gradient. The data suggest a hysteresis loop with the spreading
branch lying below the receding branch as expected from
experiments.
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and specular “free-slip” collisions against the scatterersd for
both the receding and spreading experiments, i.e., the el-
ementary mechanisms of mass and momentum transfer re-
main unchanged at the particles level. Since the difference in
the macroscopic dynamics of the concentration front be-
tween spreading and receding does not reflect a change of the
modes of interactions between the particles, the variations of
the dynamics of diffusive fronts must then be looked for in
the conditions applied at the boundaries of the LGA model.

The apparently inconsistent results of “normal,” Fick’s-
compatible receding and anomalous superdiffusive spreading
can be tentatively reconciled through the model of “offer and
demand,” initially introduced by Küntz and Lavalléef10g to
account for anomalous spreading in concentration-dependent
diffusion processes. Spreading can be viewed as the inflation
of the sourceswhich can be continuous in time or notd, i.e.,
the size of the source continuously increases as the front
progresses. The term source used above refers globally to the
reservoir from which the particles which progress into the
medium come from: it corresponds in practice to the domain
where the concentration of the particles is higher than the
initial concentration or/and higher than the concentration im-
posed along the open boundary. The way the source inflates
results from the competition between its potential of expan-
sion and the capacity of the front to move forward. The result
of this competition is settled by the diffusivity gradient, i.e.,
the spatial distribution of the transport properties inside the
inflating source, as previously proposed inf10g. For a posi-
tive dDsrd /dr, as for the LGA model described in this note
ssee Fig. 1 and also Ref.f10gd, the expansion of the source is
limited at the front because of the small diffusivity at low
concentration. Because the number of particles provided be-
hind the front is larger than what can be propagated at the
front, the spreading front actually behaves as if it were
pushed and superdiffusion occurs. The numerical results re-
ported in the previous section indicate that receding is ini-
tially driven by the same mechanism. BecausedDsrd /dr
.0, the pressure immediately builds up behind the front
once the concentration drop has been established along the
open side of the model: and as for spreading, the receding
front initially behaves as if it were pushed. Evidence of the
pressure buildup inside the source is provided by the initial
increase of momentumsFig. 6d. As a consequence, the es-
cape rate of particles is enhanced with respect to that ex-
pected from Fick’s assumption: offer is larger than demand.
This interpretation is corroborated by the fact that the time
exponent associated with receding is initially larger than 1/2
sFig. 5d as for spreading. However, receding does not involve
a mass loss only: the particles that leave the model also carry
away momentum with them. The loss of momentum contrib-
utes to efficiently dissipate the overpressure induced by the
inflation of the source behind the front. The momentum is
seen to increase first as inflation occurs and then starts to
decrease slowly after only a few thousands time steps, mean-
ing that the overpressure is dissipatingsFig. 6d. Note that the
momentum peak coincides with the moment at which the
time exponent reaches the value 1/2. After dissipation of the
excess pressure, offer can by no way be larger than demand
and receding thus scales ast1/2.

The same transport mechanism is thus involved for both
spreading and receding. The occurrence of “normal” or

anomalous diffusion only depends whether momentum re-
sulting from the inflation of the source can be dissipated or
not. As a consequence, receding scales ast1/2 after only a
short period whereas spreading remains superdiffusive over
large periods of time. The occurrence of nonclassical
“anomalous” spreading in the LGA model therefore essen-
tially reduces to a boundary problem. This in turn implies
that the theoretical explanations involving partial differential
equation of fractional ordersi.e., biased microscopic rules of
mass and momentum transfer, seef9gd, are not necessary to
account for anomalous diffusion in concentration-dependent
diffusion processes.

The predictions that have been inferred from the “offer
and demand” analysis are summarized in Table I. If the dif-
fusivity gradient is negativefdDsrd /dr,0g, diffusion is ex-
pected to be subdiffusive for both spreading and receding
according to the mechanism of offer and demand, because
transport at the front remains always more efficient than be-
hind the front. In this scheme, “true” Fickian diffusionsi.e.,
diffusion scaling ast1/2 all the timed only holds forD con-
stant, i.e., when offer behind the front exactly balances de-
mand at the front. Although the “offer and demand” mecha-
nism essentially remains a “hand waving” conceptual model
at this stage, it can account for most of the features of diffu-
sion: it is worth mentioning that its capacity to provide reli-
able predictions has already been confirmed by experimental
dataf5,10g. It should be mentioned that it might be that for
some physical systems, the diffusivity will not be a simple
monotonic increasing or decreasing function of the concen-
trationr, but will show several minima and maxima. Predic-
tion of the macroscopic behavior of diffusive fronts in such
systems is far from being straightforward at this stage. Both
the dynamics and the shape of the front may exhibit mixed
features: subdiffusive knee-shaped spreading fronts may be
one of these mixed modes for instancef14,23g. Anyway,
such problems deserve a more careful and detailed analysis
than that presented above.

The “offer and demand” mechanism which only implies a
few measurable macroscopic parameters suggests simple ex-
perimental tests. The next step of this work will thus consist
in confirming the predictions listed in Table I by experi-
ments. Among the many possibilities, investigating the dy-
namics of moisture fronts in nonsaturated porous media
seems the most promising approach. Evidence of anomalous

TABLE I. Expected relationships between the type of diffusion,
the diffusivity gradient, and the applied boundary conditions, ac-
cording to the “offer and demand” model. The variablea represents
the frontal growth exponent of diffusion.

Diffusivity gradient Spreading Receding

dDsrd /dr.0 superdiffusion normal diffusion

a.
1
2 a= 1

2

dDsrd /dr<0 normal diffusion normal diffusion

a= 1
2 a= 1

2

dDsrd /dr,0 subdiffusion subdiffusion

a,
1
2 a,

1
2
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diffusion of absorption fronts has been already reported in
several porous materialsf12,14,23g. An experimental inves-
tigation is now required to confirm beyond question that re-
ceding actually scales ast1/2 after only a short period in the
materials already investigated. It should be mentioned that
drying generally exhibits two distinct stagesse.g.,f24gd that
may eventually correspond to the two, first anomalous and
then normal, regimes identified in LGA receding simulations.
Validation of hysteresis is a bit more complex and requires
techniques such as nuclear magnetic resonance or radiogra-
phy to visualize diffusive fronts. According to the LGA simu-
lations, spreading and receding steady-state fronts are ex-
pected to be distinct. Since such techniques are now more
easily accessible, to reproduce experimentally the simula-
tions reported in previous paragraphs should be in principle
straightforward.

V. CONCLUSION

A concentration-dependent LGA diffusion model has been
used to investigate the dynamics of diffusive fronts in micro-
scopically heterogeneous macroscopically homogeneous iso-
tropic random structures. We previously established that the

t1/2 scaling expected from Fick’s law did not hold for one-
dimensional spreading of a density front in the LGA model.
The time exponent was found to be larger than 1/2, i.e.,
spreading of the density front was found to be enhanced with
respect to standard Fickian diffusion. In this paper, we dem-
onstrated that in contrast with spreading, the receding pro-
cess scales ast1/2 in the same LGA model, after only a short
transient period, i.e., spreading and receding do not obey the
same dynamics. Since the difference between spreading and
receding can only result from the changes of the conditions
applied at the boundaries, the occurrence of nonclassical
anomalous diffusion therefore reduces to a boundary prob-
lem in concentration-dependent diffusion processes. The nu-
merical results also suggest a general mechanism for hyster-
esis.
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